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    This study aims to explore whether human intentions to move or cease to move right and 

left hands can be decoded from spatiotemporal features in non-invasive 

electroencephalography (EEG) in order to control a discrete two-dimensional cursor 

movement for a potential multi-dimensional Brain-Computer interface (BCI). Five naïve 

subjects performed either sustaining or stopping a motor task with time locking to a 
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predefined time window by using motor execution with physical movement or motor 

imagery. Spatial filtering, temporal filtering, feature selection and classification methods 

were explored. The performance of the proposed BCI was evaluated by both offline 

classification and online two-dimensional cursor control. Event-related desynchronization 

(ERD) and post-movement event-related synchronization (ERS) were observed on the 

contralateral hemisphere to the hand moved for both motor execution and motor imagery. 

Feature analysis showed that EEG beta band activity in the contralateral hemisphere over 

the motor cortex provided the best detection of either sustained or ceased movement of the 

right or left hand. The offline classification of four motor tasks (sustain or cease to move 

right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor 

execution and 73% for motor imagery. The subjects participating in experiments with 

physical movement were able to complete the online game with motor execution at the 

average accuracy of 85.5±4.65%; Subjects participating in motor imagery study also 

completed the game successfully. The proposed BCI provides a new practical multi-

dimensional method by noninvasive EEG signal associated with human natural behavior, 

which does not need long-term training. 
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CHAPTER 1 
 

Introduction 
 

1.1 Background  

For many years people have speculated that electroencephalographic activity or other 

electrophysiological measures of brain function might provide a new non-muscular 

channel for sending messages and commands to the external world – a brain–computer 

interface (BCI) [1], which is a direct communication pathway between a brain and an 

external device. Research on BCIs began in 1970s at the University of California Los 

Angeles (UCLA). The field has since blossomed spectacularly, mostly toward 

neuroprosthetics applications that aim at restoring damaged hearing, sight and movement. 

Over the past 15 years, productive BCI research programs have arisen. Encouraged by new 

understanding of brain function, by the advent of powerful low-cost computer equipment, 

and by growing recognition of the needs and potentials of people with disabilities, these 

programs have concentrated on developing new augmentative communication and control 

technologies for those with severe neuromuscular disorders, such as amyotrophic lateral 

sclerosis, brainstem stroke, and spinal cord injury [1, 2]. The immediate goal is to provide 

these users, who may be completely paralyzed, or ‘locked in’, with basic communication 
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capabilities so that they can express their wishes to caregivers or even operate word 

processing programs or neuroprostheses [3]. Current BCIs determine the intent of the user 

from a variety of different electrophysiological signals. These signals include slow cortical 

potentials, P300 potentials, and mu or beta rhythms recorded from the scalp, and cortical 

neuronal activity recorded by implanted electrodes [4-6]. They are translated in real-time 

into commands that operate a computer display or other device. Successful operation 

requires that the user encodes commands in these signals and then the BCI derives the 

commands from the signals. Thus, the user and the BCI system need to adapt to each other 

both initially and continually so as to ensure stable performance [1]. Current BCIs have 

maximum information transfer rates up to 10–25 bits/min[1, 7]. This limited capacity can 

be valuable for people whose severe disabilities prevent them from using conventional 

augmentative communication methods. At the same time, many possible applications of 

BCI technology, such as neuroprosthesis control, may require higher information transfer 

rates [1, 8].  

Current BCIs use a variety of invasive and non-invasive methods to record brain signals 

and a variety of signal processing methods. Whatever recording and processing methods 

are used, BCI performance (e.g. the ability of a BCI to control movement of a computer 

cursor) is highly variable and, by the standards applied to neuromuscular control, could be 

described as ataxic. In the effort to understand this imperfection, two principles can be 

used to help underlie the brain’s normal motor outputs. The first principle is that motor 

outputs are normally produced by the combined activity of many central nervous system 

(CNS) areas, from the cortex to the spinal cord [9]. Together, these areas produce 
2 
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appropriate control of the spinal motor neurons that activate muscles. The second principle 

is that the acquisition and life-long preservation of motor skills depend on continual 

adaptive plasticity throughout the CNS [10]. This plasticity optimizes the control of spinal 

motor neurons. In the light of these two principles, a BCI may be viewed as a system that 

changes the outcome of CNS activity from control of spinal motor neurons to control of 

the cortical (or other) area. The signals from the cortical area are used by the BCI to 

determine the user’s intent. In essence, a BCI attempts to assign to cortical neurons the role 

normally performed by spinal motor neurons. Thus, a BCI requires that the many CNS 

areas involved in producing normal motor actions change their roles so as to optimize the 

control of cortical neurons rather than spinal motor neurons. The disconcerting variability 

of BCI performance may stem in large part from the challenge presented by the need for 

this unnatural adaptation. This difficulty might be reduced, and BCI development might 

thereby benefit, by adopting a ‘goal-selection’ rather than a ‘process-control’ strategy. Not 

only is ‘goal selection’ less demanding, but also, by delegating lower-level aspects of 

motor control to another structure (rather than requiring that the cortex do everything), it 

more closely resembles the distributed operation characteristic of normal motor control. 

1.2 Literature review 

1.2.1 Brain-computer interface  
 
    The brain-computer interface (BCI) provides a new means of direct brain 

communication with the external environment for patients who may partly or entirely lose 

voluntary muscle contraction such as in the ‘locked-in’ state [3]. Such patients lost control 
3 
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of their motor faculties, and can no longer outwardly express their needs and thoughts. 

These kinds of disorders have a significant effect on the quality of life (QOL) for both 

patients themselves and their families [11]. A potential solution is to provide the brain with 

a new, non-muscular communication and control channel, a direct brain-computer 

interface (BCI) for conveying messages and commands to the external world [1]. A BCI 

enables these “locked in” patients to control a computer with their brain activity for 

communication, mobility, and other purposes. Among the different techniques for 

decoding human brain signals for BCI  communication, there are invasive methods using 

neuronal spikes [12] or local field potentials (LFP) [13], non-invasive methods using 

electroencephalography (EEG) [14], magnetoencephalography (MEG) [15], functional 

magnetic resonance imaging (fMRI) [16] or near-infrared signal (NIRS) [17], [18] and the 

invasive method of electrocorticography (ECoG) [19]. Although some invasive methods 

have achieved scientific success in terms of high-speed communication and possible 

multidimensional control [20],[21],[22] in non human primate studies, these methods are 

still far from practical clinical applications because of technical difficulties such as the 

need for chronic recordings and, in particular, the balance between benefit and risk due to 

required surgical implantation of the electrodes. Furthermore, as invasive methods have 

been investigated mainly in intact non-human primates, there is a large gap for the clinical 

applications as BCI designed for paralyzed or “locked-in” human patients [23]. Among 

non-invasive methods, only EEG and related methods, which have relatively short time 

constants, can function in most environments and require relatively simple and inexpensive 

equipment, offering the realistic possibility for patients to use their brain signals to directly 
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control external devices[11]. Several successful EEG-based BCI methods have been 

reported: a slow cortical potential-based thought translation device [4], Mu rhythm-based 

cursor control [5] and P300-based letter selection [6]. For the P300-based BCI, the 

communication accuracy may decrease significantly with time due to easy fatigue [24]. 

Both slow cortical potential and Mu rhythm control methods require long-term training 

before subjects can attain robust communication or control [25]. This significantly limits 

the clinical application of BCI since many patients with severe neurological disorders have 

difficulty tolerating long-term training [26], in particular those with ‘locked-in’ syndrome. 

    One of the most useful applications for BCI is to control an external device, e.g. 

wheelchair or robotic arms, to restore motor function [27]. This purpose requires a BCI 

capable of multidimensional control. Although multidimensional control is highly 

promising using invasive methods, e.g. local field potentials/spike train [21, 28], or semi-

invasive methods using electrocorticography (ECoG) [19], the noninvasive methods, in 

particular, electroencephalography (EEG), mainly support one dimensional control [29, 

30]. Successful two-dimensional BCI using noninvasive EEG signals has been achieved 

[25]. However, subjects needed long-term training, up to several months, before they could 

reliably attain two-dimensional BCI control.  

Recent studies have developed a scheme to achieve two-dimensional control by 

sequentially combining two binary controls [31, 32]. Though sequential combination of 

one-dimensional control may achieve two-dimensional control, direct two-dimensional 

control, i.e. simultaneous control of four directions in a two-dimensional plane, will be 

more effective, and thus, more convenient for use.  
5 
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1.2.2 Even-related oscillations  
 

Human somatotopic organization indicates that human limbs are controlled by 

contralateral brain hemispheres. Many neurophysiological and neuroimaging studies have 

confirmed the nature of contralateral control [33-35]. Therefore, reliably decoding the 

movement intention of right and left hand, which are associated with different 

spatiotemporal patterns of event-related desynchronization (ERD), i.e. oscillation 

amplitude attenuation, and event-related synchronization (ERS), i.e. oscillation amplitude 

increase, may provide additional degrees-of-freedom for control. During physical and 

motor imagery of right and left hand movements, beta band brain activation (15-30 Hz) 

ERD occurs predominantly over the contralateral left and right motor areas. The brain 

activity associated with ceasing to move, the post movement ERS, can also be found over 

the contralateral motor areas. It suggests that the brain activity associated with four natural 

motor behaviors (thus, not requiring training) may potentially provide four reliable features 

for a discrete two-dimensional control, e.g. left-hand ERD to command move to the left, 

left-hand ERS to command move up, right-hand ERD to command move to the right, and 

right-hand ERS to command move down. As the spatial distribution of post movement 

beta rebound (ERS) is more focal than ERD distribution, the detection of ERS might be 

potentially more reliable than ERD detection only [36]. As a result, the proposed method 

to discriminate spatial distribution of ERD and ERS might provide more accurate 

classification than previous methods relying on the detection of ERD only [37, 38]. 
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Although evidence has demonstrated separate spatial patterns of ERD and ERS with 

physical movement, it is also important to know about the hemispheric patterns during 

motor imagery of limb movement which is essential for achieving purely mental control 

without involvement of muscle activity.  

1.3 Objective of this study  

In summary, the aim of this study is to introduce a novel BCI paradigm/method: 

decoding ERD and ERS associated with natural motor behavior so that the subjects can 

control cursor movement in a two-dimensional plane with minimal training. We have 

tested whether the decoding of multiple movement intentions is reliable enough to control 

a two-dimensional computer cursor for a possible multi-dimensional brain-computer 

interface (BCI). We also employed advanced signal processing and classification methods 

for better decoding of human intentions from single trial EEG to improve the performance 

of the proposed BCI paradigm. The reliability of two-dimensional cursor control has been 

tested on a virtual online computer game. 
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CHAPTER 2 
 

Experimental Design 
 

2.1 System Description 

 

 

Figure 1. Experimental system. EEG signals were picked up from scalp and amplified, then were 
digitized through A/D convertor and sent to the computer for signal processing. 

 
    Figure 1 shows the system setup. A monitor was placed in front of the subject, 

presenting the experimental paradigm. Meanwhile, EEG signal was recorded from 27 (tin) 

surface electrodes attached on an elastic cap. Surface electromyography (EMG), which 
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was used to monitor the movement and bipolar electrooculogram (EOG) above left eye and 

below right eye were also recorded. The analog signals were amplified, and then digitized 

through A/D convertor. The digital signal was then sent to a computer for online 

processing. 

2.2 Subject  

    Five healthy volunteers (three females and two males) between the ages of 20 and 27 

participated in this study. They were right-handed according to the Edinburgh inventory 

[39]. All subjects gave informed consent. Prior to this study, none of these subjects had 

been exposed to a BCI system or were informed of the experimental hypothesis. The 

protocol was approved by the Institutional Review Board. 

2.3 Experimental paradigm  

The experimental paradigm in this study was similar to a previous study [32], including 

two sessions. The first session was motor execution with physical movement, and all five 

subjects participated in. The second session was motor imagery, and two (S1 and S2) of 

the five subjects were also available to further participate in the second session.  

During the recording, a quiet environment with dim light was provided to maintain the 

subjects’ attention level. Subjects were seated in a chair with the forearms semi-flexed and 

supported by a pillow. They were asked to keep all muscles relaxed, except for those in the 

performing arms; besides, they were also instructed to avoid eye movements, blinks, body 

adjustments, swallowing or other movements during the visual cue onset. During motor 

imagery, the investigator monitored the EMG activity continuously; once EMG activity 
9 
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was observed, subjects were reminded to relax the muscles. Trials with EMG 

contamination were excluded based on visual inspection for further offline ERD and ERS 

feature analysis and classification. Each of the motor execution with physical movement 

and motor imagery sessions contained an initial calibration step to determine the optimal 

frequency band and spatial channels. The selected features and generated model were then 

used to test an online two-dimensional-cursor-control game. The two sessions were 

performed continuously within three to four hours in a single visit.  

 
 

2.3.1 Calibration 
 

Visual stimuli were periodically presented on a computer screen, placed in front of the 

subjects, with the distance and the height adjusted for subject’s comfort. In the first session 

(pure physical movement), there were four cues in the task paradigm, ‘RYes’, ‘RNo’, 

‘LYes’, and ‘LNo’ (‘R’ indicating right hand task, and ‘L’ for left hand task). The visual 

cue was displayed for a period of T1 in green color, followed by a color change of the cue 

to blue, which was illustrated in Figure 2. The second cue was displayed for a period of 

T2, after which the cue disappeared. The lengths of T1 and T2 window were set to 2.5 s 

initially. The time interval between the end of T2 and the next T1, i.e. trial-to-trial interval, 

was set to 2 seconds. Subjects were instructed to begin repetitive wrist extensions of the 

right arm at the onset of the initial cue ‘RYes’ or ‘RNo’. At the time of color change, the 

subject was instructed to continue movement with the ‘Yes’ cue or abruptly relax and stop 

10 
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moving with the ‘No’ cue. The task was similar for ‘LYes’ and ‘LNo’, where subjects 

performed left hand instead.  

In the calibration step for motor imagery, subjects were asked to perform both physical 

movement and motor imagery according to eight cues: ‘PHYRYes’, ‘PHYRNo’, 

‘PHYLYes’, ‘PHYLNo’ (for physical movement) and ‘MIRYes’, ‘MIRNo’, ‘MILYes’, 

‘MILNo’ (for motor imagery). The alternation of physical movement and motor imagery 

was intended to provide the subject with a vivid mental sensation of physical movement 

for better motor imagery. The visual cues were randomly presented, and the subject 

performed either physical movement or motor imagery, using either right or left hand, 

following the instruction of the ongoing cue. The lengths of T1 and T2 were adjusted 

according to the different response delays for each subject, and kept consistent in the 

following sessions/steps.  

The calibration procedure for the physical movement session consisted of three or four 

blocks of trials, each block consisting of 48 trials, 24 ‘Yes’ or ‘No’ stimuli with total 

duration of 6-7 min. The ‘Yes’ and ‘No’ stimuli were provided pseudo-randomly. The 

calibration for the motor imagery session consisted of two to four blocks of trials, each 

block consisting of 96 trials, with ‘PHY’ and ‘MI’ appearing pseudo-randomly for 

alternating physical movement and motor imagery, and 48 ‘Yes’ and 48 ‘No’ stimuli with 

total duration of 12-13 min.  

 

11 
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Figure 2. Calibration paradigm. In the case of ‘RYes’, subjects were instructed to start motor 

execution or motor imagery with right hand when the first cue presented (green color) at the beginning 

of T1 window; when the color of cue turned to blue at the beginning of T2 window, subjects were 

instructed to sustain motor execution or motor imagery (ERD indicating with small blue circle was 

expected on the left hemisphere, see detail in the text) In the case of ‘RNo’ with right hand, subjects 

were instructed to start motor execution or motor imagery when the first cue presented (green color) 

at the beginning of T1 window; when the color of cue turned to blue at the beginning of T2 window, 

subjects were instructed to stop motor execution or motor imagery (ERS by small red circle was 

expected on the left hemisphere). Procedures were similar for ‘LYes’ and ‘LNo’ with left hand motor 

execution or motor imagery.  

 

12 
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2.3.2 Discrete Two-dimensional-cursor-control game 
 

Sustained physical movement is usually associated with a persistent event-related 

desynchronization (ERD), while cessation of movement is followed by a beta band 

rebound above baseline power levels, i.e. event-related synchronization (ERS). Since we 

intended to discriminate ERD from ERS, which occurs only after cessation of movement 

in the T2 window,  we only extracted EEG signal in the T2 time window to classify ‘Yes’ 

or ‘No’ intention determined from ERD and ERS. Successfully classifying the four kinds 

of movements in motor execution or motor imagery was the basis of realization of 2D 

control.   

In a 2D plane, the cursor can move to four directions: up, down, right and left, each of 

which was linked to one of the four movements. We intended to decode movement 

intentions to determine the subject’s control of cursor direction. As human movement 

intention is associated with spatial ERD and ERS (on either left or right hemisphere), we 

applied the detection strategy as shown in Figure 3. For example, if the subject wanted to 

move the cursor to the right, he needed to perform the ‘RYes’ task, either physical or 

motor imagery to develop an ERD pattern on the right hemisphere. When the associated 

ERD on the left hemisphere was detected in the T2 time window, the cursor would move 

to the right direction; similarly, if the subject wanted to move the cursor upward, he needed 

to perform the ‘LNo’ task, and when the associated ERS on the right hemisphere was 

detected in T2 window, the cursor would move upward accordingly. 

 

13 
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Figure 3. Scheme of 2D cursor control. Four directions control by spatial detection of ERD/ERS on 

right/left hemisphere associated with intention to move or cease to move of left/right hand. In order to 

control cursor moving to left (‘LYes’ direction), subjects may perform sustained physical 

movement/motor imagery so that ERD on the right hemisphere can be detected. It is similar for other 

direction controls. 

 

Upon successfully decoding movement intentions in the offline analysis, the subjects 

played a game of two-dimensional control of cursor movement on a computer monitor. A 

brief description of the 2D cursor-control game is given here since the detailed design of 

the online game was similar to the one given for binary cursor-control game [32]. Subjects 

were instructed to move the cursor to the target and avoid a designated ‘trap’. Cues were 

presented with the same duration as that in the calibration session. Classification of ‘Yes’ 

and ‘No’ trials of right and left hands were used to direct 2D control correlated with cursor 

movement. As illustrated in Figure 3, the detection of ‘LYes’ will direct the cursor move to 

the left, and similar with the other directions. The initial positions of cursor, target and trap 

14 
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were provided pseudo-randomly and the number of detections was different in each game. 

Subjects played 4-6 games and they were allowed 5-10 min to practice the game before the 

test. 

In the online 2D game, subjects determined the path to reach the target using their own 

game strategy. From the example shown in Figure 4(a), the subject may choose to move to 

the right instead of downward in that situation. It was also possible that the subject would 

choose to move up to the margin of the grid and then move along the margin to the target.  

Due to the various strategies, it was difficult to determine the cursor-control accuracy from 

the path of the cursor movement. Instead, in the case of physical movement, we used the 

EMG activity in the detection window to interpret whether the subjects desired to move to 

one of four directions, and as a result, the control accuracy could be quantitatively 

determined from the actual cursor movement from the EEG derived results. In the case of 

motor imagery for online game, the subjects determined the direction to move; as there 

was no EMG activity of motor imagery, we were unable to know whether each movement 

was correctly decoded as the subject intended. Therefore, instead of quantitative 

measurement of control accuracy, we qualitatively evaluated the success of the two-

dimensional cursor control with motor imagery by whether the subjects could control the 

cursor to reach the target. However, if the cursor was moved into the trap or the total 

number of moves reached the limit of 5 times of the possible shortest moves, the game 

would automatically stop. We considered the successful judgment of the two-dimensional 

cursor control with motor imagery to be a qualitative measurement. The quantitative 

measurements of control accuracy for motor imagery were determined from the visually-
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cued motor imagery of wrist extension, i.e. in the calibration procedure. Figure 5 gives an 

example of successfully controlled 2D game. 

 

 
Figure 4. Paradigm of discrete two-dimensional cursor-control game. (a) A game grid is displayed for 

2-3 s showing a cursor (blue), target (red) and trap (black). (b) All squares except those adjacent to the 

cursor are masked and green prompts are displayed in the adjacent squares. (c) After a T1 delay, these 

prompts turn blue and remain for a period of T2. (d) The subject’s response uniquely determines the 

cursor movement direction, which the cursor slides to. The entire process (a)-(d) then repeats for the 

next cursor move, and so on until the target is obtained, the trap is hit or too many moves have been 

made. 
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Figure 5. Result of a 2D game given by BCI2VR Virtual Reality. This picture shows the subject 
completed the game by hitting the target. 

 
 
    The main purpose for the proposed computer game was to improve the subjects’ 

motivation in participating in the investigation.  The subjects played the game with 

physical movements first. When the subjects were comfortable with the game, whether the 

subjects could play the game with motor imagery was determined.  

2.3.3 Mental strategy for motor imagery 

In motor imagery part, the subjects were asked to imagine repetitive wrist extension of 

their own hands. As motor imagery is not a routine natural behavior in daily life, usually 

mental training with feedback is required before the subjects can perform vivid 

imagination of the movement [40]. In this study, there was no feedback in the calibration 

procedure for motor imagery and the modeling under the calibration data may be 
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unreliable if subjects were unable to make imagination of physical movements. In order to 

achieve better calibration as well as modeling, subjects performed both physical movement 

and motor imagery in the calibration step in motor imagery session. Our assumption was 

that subjects would be able to imagine more vividly right after a physical movement. 

However, only the data associated with motor imagery were used for offline calibration 

and modeling for the subsequent motor imagery study. In motor imagery task, subjects 

reported difficulty with imagining the termination of movement. We guided them to stop 

imagining movement by switching from the imagination of motor task to a non-motor task 

such as reciting the alphabet or counting numbers mentally. 
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CHAPTER 3 
 

Data Acquisition and Online Processing System 
 

EEG was recorded from 27 (tin) surface electrodes (F3, F7, C3A(PC3), C1, C3, C5, T3, 

C3P(CP3), P3, T5(P7), F4, F8, C4A(PC4), C2, C4, C6, T4, C4P(CP4), P4, T6, FPZ, FZ, 

FCZ(PCZ), CZ, CZP(CPZ), PZ and OZ) attached on an elastic cap (Electro-Cap 

International, Inc., Eaton, OH, U.S.A.) according to the international 10-20 system [41], 

with reference from the right ear lobe and ground from the forehead. Figure 6 shows the 

placement of the 27 electrodes (marked by red circles) on the cap. For surface 

electromyography (EMG), which was used to monitor the movement, two electrodes were 

filled with conductive gel and taped over the right and left wrist extensors. Electrodes for 

bipolar electrooculogram (EOG) above left eye and below right eye were also pasted.  

Total duration of preparation included time to obtain informed consent, paradigm 

explanation, setting up the electrodes and preparations of hardware and software. This 

procedure took about 30 min to 1 hour. Signals from all the channels were amplified using 

a 64 channel g.USBamp-System (g.tec GmgH, Schiedlberg, Austria), filtered (0.1-100 Hz) 

and digitized (sampling frequency was 250 Hz) through A/D convertor. 
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Figure 6. Placement of 27 electrodes on the cap, circled by red. They are F3, F7, PC3 (C3A), C1, C3, 
C5, T3, CP3 (C3P), P3, P7 (T5), F4, F8, PC4 (C4A), C2, C4, C6, T4, CP4 (C4P), P4, T6, FPZ, FZ, PCZ 
(FCZ), CZ, CPZ (CZP), PZ and OZ 

 

The digital signals were then sent to a HP PC workstation and were online processed 

using a home-made MATLAB (MathWorks, Natick, MA) Toolbox: brain-computer 

interface to virtual reality or BCI2VR [31, 32] (Figure 7 shows the Graphical User 

Interface (GUI) of BCI2VR). The BCI2VR programs provided both the visual stimulus for 

the calibration and the two-dimensional cursor-control game, as well as online processing 

of the EEG signal (showing by Figure 8). The signal for decoding was extracted following 

the cues from the visual stimulus. 
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Figure 7. BCI2VR GUI interface.  

 
 
 

 

Figure 8. View continuous data in data analysis window: use menu bars or tool bars to change/scroll 
views.
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CHAPTER 4 
 

Computational Methods and Data Processing 
 

Recent BCI studies reported that BCI performance in terms of both accuracy and 

efficiency can be further improved by applying advanced filters and more computationally 

intensive non-linear classification methods [38, 42]. We have employed simple linear 

methods first, and then more intensive computational methods have been explored to 

determine whether and how the classification performance could be further improved. 

The online signal processing to decode movement intention consists of three steps: (1) 

spatial filtering, (2) temporal filtering, and (3) feature extraction and classification. 

4.1 Spatial filtering  

    Surface Laplacian derivation (SLD) was applied. EEG signal from each electrode was 

referenced to the averaged potentials from the nearby four orthogonal electrodes [43]. SLD 

operation improves the localization of sources, by reducing the smearing effect in 

conducting layers of the head, and also reducing the common reference effect [44].  

Besides, the EEG feature of local synchrony, i.e., frequency power changes, can be 

enhanced as well [45]. As a result, the spatial difference due to different hand movements 

might be more distinguishable.  
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4.2 Temporal filtering  

    Temporal filtering: the power spectral density was estimated from the spatially filtered 

EEG signal from the T2 window and according to the visual inspection of time-frequency 

plot of ERD and ERS (refer Results session and Figure 8 and 9), the time period 1s-2s after 

T2 window started was extracted in order to obtain the strongest ERD/ERS. Because the 

signal was no longer stationary or associated with certain motor task outside a short-lasting 

data window, the data length for estimation was limited so that the natural power 

estimation of ERD and ERS under the periodogram method was not a consistent estimation 

with a variance as large as the true spectrum. Welch method was applied with a Hamming 

window to reduce estimation variance and side-lobe effect [46]: the data in the selected 

time-window was segmented and periodograms from all segments were averaged to obtain 

smoothed estimation. The length of segment determining frequency resolution was 

compromised with the number of segments determining estimation variance so that 

segment length or frequency bin width needed to be optimized. The optimization was 

performed using cross-validation method with a Mahalanobis Linear Distance (MLD) 

classifier. We found 4 Hz frequency resolution or segment length of 256/4=64 under 50% 

overlapping, provided a better classification of ERD and ERS across subjects, which was 

consistent with what we used for binary control of 2D cursor movement [31].  
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4.3 Feature extraction and classification  

For either physical movement or motor imagery, there were about 96 trials making the 

data pool of 96 samples with 16 samples for each of four classes. The offline performance 

of multi-class classification was evaluated from 10-fold cross-validation; 90% of data pool 

was used for training, and the other 10% was used for validation so that the validation 

dataset was independent from the training dataset. For classification methods using hyper-

parameters or feature evaluation for feature selection, those parameters or features were 

also determined by training data set only. In the online game, the features for decoding the 

movement intention was extracted and classified using the parameters determined from the 

calibration dataset. 

4.3.1 Feature extraction 
 

Empirical feature reduction:  assuming that movement intention associated cortical 

activities occur over the motor cortex, we reduced the channel number from 29 to 14, 

which covered both left and right motor area. Furthermore, as we did not expect relevant 

activities in the delta, theta and gamma band, only alpha and beta band (8-30Hz) activities 

were extracted for modeling and classification. Thus, the total number of extracted features 

were 8 (frequency bins) × 14 (channels) = 112 features. 
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    Bhattacharyya distance: Bhattacharyya distance provides an index of feature separability 

for binary classification, which is proportional to the inter-class mean difference divided 

by intra-class variance [47]. The empirically extracted features were ranked by the 

Bhattacharyya distance for further classification. 
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    Genetic algorithm: Genetic algorithm (GA)-based feature selection is a stochastic search 

in the feature space guided by the concept of inheriting, where at each search step, good 

properties of the parent subsets found in previous steps are inherited. 10-fold cross-

validation was used with a Mahalanobis linear distance (MLD) classifier for feature 

evaluation [48]. In this approach, the population size we used was 20, the number of 

generations was 100, the crossover probability was 0.8, the mutation probability was 0.01, 

and the stall generation was 20. 

 

4.3.2 Classification methods 

    Mahalanobis Linear Distance Classifier: Classification was done upon measuring 

Mahalanobis linear distance , which computed a pooled covariance matrix averaged from 

individual covariance matrices in all task conditions where the discriminant boundaries 

were hyper-planes leaning along the regressions [49]. All 112 features after empirical 

feature reduction were used for calculating the distance in high dimensional space. 

    GA-based Mahalanobis Linear Distance Classifier (GA-MLD): The sub-optimal feature 

subset was selected by GA, and the selected features providing the best cross-validation 

accuracy were applied to a Mahalanobis Linear Distance Classifier. The number of 

features for the subset was 4, which was determined from the cross-validation accuracy 

with feature numbers of 2, 4, 6, 8 and 10 from the calibration dataset of S1.  

    Decision Tree Classifier: Since a certain feature subset, for example, channels over the 

left motor cortex may be sensitive to discriminate the intention to move the right hand and 
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not sensitive for detecting other movement intentions, a decision tree method (DTC) was 

employed for the multi-class classification task in this study. At each level of DTC, the 

features for one-to-others classification were ranked by Bhattacharyya distance, and the 4 

features with higher rank were used for classification by MLD. The number of the feature 

for classification was determined from preliminary comparison with numbers of 2, 4, 6, 8 

and 10.  

Support Vector Machine (SVM) Classifier: SVM tackles the principle of structure risk 

minimization with the consideration of maximization of the margin of separation [50]. As 

a consequence, SVM can provide a good generalization performance independent of the 

sample distribution. As a promising method, SVM has been suggested in a number of BCI 

applications [51, 52]. We employed a SVM approach provided in LIBSVM (Fan et al., 

2005). The radial basis function was used as the SVM kernel function as it can provide 

similar classification outcome compared with other kernels [53]. As the performance of 

SVM depends on the regulation parameters or hyper-parameters C and the width of the 

kernel σ [54, 55], 10-fold cross-validation was performed; 2K , K from -5 to 15 with step 

of 2 for the penalty parameter and 2K, K from -15 to 5 with step of 2 for the spread 

parameter.  These parameters were determined by the training dataset only. 

4.4 Data processing for neurophysiological analysis 

 Offline data analysis was performed to investigate the neurophysiology following the 

tasks of ‘Yes’ and ‘No’ using the right or left hands. The calibration datasets were used for 

analysis. Data processing was performed using MATLAB Toolbox of BCI2VR. Epoching 
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was done with windows of -2s to 7s with respect to the first cue onset. Any epochs 

contaminated with artifacts were rejected. ERD and ERS were calculated for each case. 

Epochs were linearly de-trended and divided into 0.256s segments. The power spectrum of 

each segment was calculated using FFT with Hamming window resulting in a bandwidth 

of about 4 Hz. ERD and ERS were obtained by averaging the log power spectrum across 

epochs and baseline corrected with respect to -2s to 0s. 
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CHAPTER 5 
 

Results of Neurophysiological Analysis 
 

5.1 Neurophysiological analysis of ERD/ERS 

The proposed BCI in this study intended to differentiate ERD and ERS patterns in two 

hemispheres following right hand and left hand movement or motor imagery. In the 

calibration session, for either hand, subjects performed motor execution or motor imagery 

during both T1 and T2 windows for the ‘Yes’ case, whereas they performed the same tasks 

during the T1 window and stopped to relax during T2 window for the ‘No’ case. The 

motor task was the same in T1 window for both ‘Yes’ case and ‘No’ cases. The 

spatiotemporal analysis following the ‘No’ cue onset was performed for either hand using 

the calibration dataset for both motor execution and motor imagery.  

Figure 9 shows examples of time-frequency plots, head topographies of ERDs or ERSs 

for motor execution with physical movement, from Subject 1, 2, 3 and 4, respectively. For 

each subject, time-frequency plots of channel C3 over the left sensorimotor cortex and C4 

over the right hemisphere are illustrated on the left two columns and head topography of 

ERD or ERS to their right, containing each of the four situations: ‘RYes’, ‘RNo’, ‘LYes’, 

and ‘LNo’. In the time-frequency plot, 0 s stands for the first cue (green in the visual 
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paradigm) occurrence. ERD (blue color) was observed from around 0.5 - 1s after the cue 

onset due to the response delay; for S1, S2 and S3, ERD in both alpha and beta bands from 

10-30 Hz was observed over motor areas contralateral to the hand moved. The ERS in red 

color was mainly observed in the beta band centered around 20 Hz over the contralateral 

motor areas. Compared with ERD patterns, ERS was short-lasting in time but highly 

distinguishable. The ERD and ERS topography shows beta band activity: 21-24 Hz for S1 

and S2, and 17-20 Hz for S3. Therefore, the ERD and ERS on either left or right 

hemisphere provided four spatial patterns to detect ‘RYes’, ‘RNo’, ‘LYes’, and ‘LNo’ 

intentions. However, ERD and ERS were less distinguishable for S4 (21-24 Hz for 

topography).  

Figure 10 shows the time-frequency plots and head topography of ERD and ERS 

associated with motor imagery. Similar to the patterns associated with physical movement, 

ERD associated with motor imagery was observed in both alpha and beta band on the 

contralateral hemisphere with the hand moved, although ERD amplitude was smaller than 

that of physical movement. ERS in the T2 window was observed on the contralateral 

hemisphere in beta band (13-24 Hz) only, and its amplitude was smaller than that of 

physical movement. During left hand motor imagery for S1 (‘LYes’), ERD in T2 time 

window was also observed on the left hemisphere. The ERD and ERS associated with 

motor imagery also provided four spatially differentiable patterns, however, the smaller 

amplitudes of ERD and ERS with motor imagery may result less effective detection in 

single-trials.  
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Figure 9. Time-course and topography of ERD and ERS during motor execution following calibration 

paradigm for S1, S2 (a), S3 and S4 (b). The horizontal coordinates are time in second and vertical 

coordinates are frequency in Hz for all the plots. The blue color stands for power decrease or ERD; the 

red stands for power increase or ERS. T1 window is from 0 s to 2.5s and T2 window from 2.5 s to 5 s. 

For S1, S2 and S3, ERD was observed in T2 window on left hemisphere during sustained right hand 

movement; ERS was observed in T2 window on left hemisphere when subjects ceased to move right 

hand movement. During left hand movement, ERD was observed in T2 window on right hemisphere 

during sustained movement and ERS on right hemisphere when subjects ceased to move left hand. 

ERD and ERS in each case were marked by pink circles in the time-course plot. The head topography 

corresponding to the pink marked time period was provided next to the time-course plots. 
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Figure 10. Time-couse and topography of ERD and ERS during motor imagery following calibration 

paradigm for S1 and S2. The horizontal coordinates are time in second and vertical coordinates are 

frequency in Hz for all the plots. For both S1 and S2, ERD is obtained in the time window with 

sustained motor imagery and ERS with termination of motor imagery. ERDs appear in both alpha and 

beta bands, bilateral, whereas ERSs appear only in alpha band on the contralateral hemisphere. ERD 

and ERS in each case were marked by pink circles in the time-course plot. The head topography 

corresponding to the pink marked time period was provided next to the time-course plots.   
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5.2 Feature analysis 

The best frequency bands and channels for classifying movement intentions were 

determined from the calibration datasets. Figure 11 shows the spatial-frequency feature 

analysis indexed by Bhattacharyya distance for S1, S2, S3 and S4 during motor execution 

with physical movement, where all the channels over the whole head were used. The first 

column for each subject illustrates the channel-frequency plot of the Bhattacharyya 

distance, and the second column is the topography of the Bhattacharyya distance of the 

best frequency band. In Bhattacharyya distance plot, the dark red color shows the higher 

Bhattacharyya distance standing higher separability to classify movement intentions from 

single trial EEG signal. 
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Figure 11. Feature visualization indexed by Bhattacharyya distance for S1, S2, S3, and S4 during 

motor execution following the calibration paradigm. The best frequency band with the highest 

separability was found in beta band, and the best channel was found on sensorimotor areas.  
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In the channel-frequency plot for S1, the higher Bhattacharyya distance value for right 

hand physical movement was observed in beta band ranging from 17-24 Hz on the 

channels located on left hemisphere over the sensorimotor area. The high separability 

between ERD and ERS in beta band was consistent with the time-frequency analysis in 

Figure 9. The topography of the Bhattacharyya distance around 17-24 Hz shows that the 

best EEG spatial channels for the classification of ‘RYes’ and ‘RNo’  were in the 

contralateral left hemisphere over the sensorimotor area since ERS presented on 

contralateral left hemisphere only, although ERD occurred bilaterally as shown in Figure 

9. A higher Bhattacharyya distance value for left hand physical movement was seen also in 

beta band on the contralateral right hemisphere. For S2, the distribution of Bhattacharyya 

distance values was similar to that of S1, except that for either right hand or left hand, 

‘Yes’ case showed high separability only on contralateral hemisphere, which can be seen 

in the topography of Bhattacharyya distance. For S3, the best frequency band with the 

highest Bhattacharyya distance value was in the beta band around 13-24 Hz. The higher 

separability of beta band activity was consistent with the ERD and ERS features shown in 

Figure 9, where both ERD and ERS were seen only in beta band. For S4 with physical 

movement, the values of Bhattacharyya distance were much smaller than other subjects, 

although the spatial pattern was similar. The lower Bhattacharyya distance indicates that 

the classification would be much difficult from single trial signals.  

Figure 12 shows feature analysis for S1 and S2 with motor imagery. For S1 and S2, 

distribution of higher Bhattacharyya distance values was similar to that with physical 

movement, but the separability was lower. The highest Bhattacharyya distance values were 
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in the beta band and on the channels over contralateral hemisphere for both right and left 

hand motor imagery.  

 

 
 
 

Figure 12. Feature visualization indexed by Bhattacharyya distance for S1 and S2 during motor 

imagery following the calibration paradigm. The horizontal coordinates are channel and vertical 

coordinates are frequency in Hz for all the plots. The best frequency band with the highest separability 

was found in beta band, and the best channel was found on sensorimotor areas.  
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5.3 Classification 

The comparison of 10-fold cross-validation accuracies using MLD, GA-MLD, DTC and 

SVM methods for S1, S2, S3 and S5 during physical movement is shown in Table 1. Since 

ERD and ERS patterns were not strong enough for S4, we excluded it from further 

exploration of classification methods. MLD has a mean value of 70.2%; after applying 

genetic algorithm in feature selection, GA-MLD provides an improved mean value of 

88.3%. Using a paired t-test, GA-MLD is found to have a significant improvement of 

classification accuracy than MLD (t=7.64, df=3, p-value<0.01*). Similarly, we also 

compared DTC and SVM performance with that of MLD. Paired t-test gives the result 

showing that DTC outperforms MLD significantly (t=4.20, df=3, p-value<0.03*) and SVM 

improved significantly than MLD as well (t=5.56, df=3, p-value<0.02*).  

 
 

                                         Table 1. 10-fold Cross-Validation Accuracy 

Subject MLD(%)          GA-MLD(%) DTC(%) SVM(%) 
S1 
S2 
S3 
S5 

63.1 ± 4.51 
79.5 ± 6.21 
67.3 ± 3.04 
71.0 ± 2.18 

87.7 ± 1.29 
93.0 ± 1.97 
85.2 ± 0.95 
87.2 ± 0.58 

87.8 ± 1.47 
85.5 ± 3.87 
84.5 ± 2.30 
87.7 ± 1.75 

87.8 ± 1.31 
90.0 ± 3.12 
88.9 ± 1.04 
85.8 ± 2.13 

Average 70.2 ± 6.97 88.3 ± 3.33 86.4 ± 1.64 88.1 ± 1.79 
MLD: Mahalanobis linear discrimination; GA-MLD: genetic algorithm-based 

Mahalanobis linear discrimination; DTC: decision tree classifier; SVM: support vector 

machine classifier 

 
Although the intensive methods GA-MLD (mean 88.3%), DTC (mean 86.4%) and SVM 

(mean 88.1%) all performed better than MLD (mean 70.2%) significantly, there was no 
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significant difference among these three methods through one-way analysis of variance 

(AVONA), F(1,2)=5.7, p-value<0.39, alpha=0.05.  

Since there was no significant difference among the intensive methods, DTC method 

was employed for the online 2D cursor control game. Except for S4, all the other four 

subjects were successful to control the cursor moving to the target by physical movement 

and the average online game performances for S1, S2, S3, and S5 were 92%, 85%, 81%, 

and 84%, with the overall performance of 85.5%±4.65%.  

S1 and S2 participated in the second session performing motor imagery tasks. Offline 

classification accuracy for S1 was 73%±5.97%, and for S2 was 59.2%±3.63%, which were 

lower than those of physical movement with physical movement.  The two subjects both 

reported good concentration throughout the recording, except that S2 felt sleepy in a short 

period in the middle. Online 2D cursor control game using motor imagery was performed 

by S1 and S2. S1 was able to move the cursor to the target; However, S2 performed less 

well than S1. The performance was consistent with the classification results for motor 

imagery. 
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CHAPTER 6 
 

Discussion and Future Directions 

 

6.1 Spatial detection of ERD/ERS 

We observed contralateral ERD and ERS in the beta band during sustained movements 

and post movement from all subjects when they performed physical movements; ERD over 

the motor area on left hemisphere associated with sustained right hand extension; post-

movement ERS or beta band rebound occurring when stopping movement; ERD on right 

hemisphere associated with sustained left hand extension and ERS with cessation of the 

movement. ERD and ERS patterns on left and right hemispheres were highly differentiable 

for subjects S1, S2, S3 and S5, whereas it was less detectable for S4. For motor imagery, 

S1 and S2 showed similar ERD/ERS patterns as those with physical movement. The 

amplitudes of ERD/ERS, however, were smaller. Although the ERD/ERS patterns were 

expected to be similar between physical movement and motor imagery, we considered that 

the effectiveness of motor imagery, i.e. how to vividly imagine limb movement, might 

highly affect cortical ERD/ERS patterns.  

The reason for the fact that motor imagery has less robust performance than physical 

movement might be that motor imagery is not a natural behavior and thus requires more 
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effort than performing physical movement. Besides, compared with physical movement, 

there is no neural feedback in motor imagery which may exhibit less activity (ERS) in 

motor cortex and result in lower signal to noise ratio. Considering that motor imagery is 

more meaningful for BCI application, training may be needed to enhance the involvement 

of subjects with motor imagery.        

 

6.2 Decoding rate and accuracy 

 

The BCI performance can be evaluated from both the decoding rate and accuracy [1]. 

Wolpaw et al. introduced the information transfer rate (ITR) for a BCI as bits per minute 

(bpm) as a good measurement for both decoding rate and accuracy [6]. In our study of 2D 

control, accuracies for physical movement ranged from 85.2% to 93.0% (given by GA-

MLD, although not significantly better than DTC and SVM), with the average 88.3%; for a 

four-class mental task, ITR was from 1.16 bits per trial, to 1.37 bits per trial, with the 

average 1.29 bits per trial. For motor execution with physical movement, the total duration 

of T1 and T2 windows was 5 s, i.e. 12 trials per minute. Therefore, the ITR was 13.9 to 

16.5; the average was 15.5 bits per minute. Similarly, for motor imagery, the ITR was 4.15 

bits per minutes to 8.03 bits per minutes. The cuing period T1 is important as it left enough 

time for the subjects to prepare for the movement. The results were comparable in terms of 

both accuracy and decoding rate with previous studies (see review in [1]). We consider that 

the T1 window can be further shortened or optimized when subjects can make rapid 
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response, and as a result, the ITR can be further improved. We also consider that the 

control performance/accuracy is very important in practical BCI application. As BCI is 

intended for patients having limited motor function which features extremely slowness in 

motor control, it may be appropriate to have limited communication speed, whereas the 

accuracy needs to be high enough so that the users may avoid frustration when using BCI.    

Invasive methods using spike train or local field potentials [12, 22], or at least semi-

invasive method using ECoG [19], have been investigated as the major signal methods for 

two-dimensional (or three dimensional) BCI control. The noninvasive signal method, 

though more convenient for practical application, has been less studied. This study 

provides further evidence for two-dimensional BCI control using noninvasive method. 

From spatial detection of ERD and ERS, two-dimensional control was reliable with 

detection accuracy of 80-90%.  

    In conventional 2D BCI cursor control paradigm, the target locations were at four 

margins in 2D monitor [25]. We proposed a new BCI paradigm, in which the target may be 

at any place in 2D monitor. On the other hand, the previous 2D control was achieved by 

accurate control of EEG frequency power so that long-term training was required before 

subject was able to regulate EEG rhythm precisely. In the current proposed BCI methods, 

BCI cursor control was achieved by the ERD and ERS associated with natural motor 

behavior so that long-term training was no longer required. 
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6.3 Difficulty and improvement 

Unlike in binary motor imagery [32] where subjects imagine the movement of only one 

limb of the body, motor imagery in 2D motor control tasks can be more difficult, since 

subjects need to respond quickly to each imagery task and switch reactions successfully 

among the four tasks. Fatigue is a common issue during data collection, which requires a 

relatively long time and repetitive motor tasks. To maximize subject involvement so that 

they are highly motivated, the paradigm can be further improved in terms of a better design 

and a shorter calibration time, which will greatly benefit BCI application. Also, the 

subjects can be trained more as to how to avoid fatigue in the experiments. These issues 

will be considered and addressed in the subsequent studies. 

 

6.4 Possible contamination of muscle artifact 

EMG contamination from facial muscles may possibly cause serious problems in BCI 

development [56]. Throughout the experiment, EMG signal was monitored for all subjects, 

to make sure correct movements were performed and no EMG occurred during motor 

imagery. Further, the signal for classification was extracted from around 3.5s-4.5s with 

respect to the first color cue onset (i.e. 1s-2s after T2 started) so that the artifact 

contaminated signal outside this period was not included; feature analysis showed that beta 

activities restricted to motor areas were used for classification. Therefore, the EMG 

contamination was not a concern in this study. 
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6.5 Classification method analysis 

    Mahalanobis Linear Distance uses a large number of features for classification. In multi-

class classification tasks, a very large data set is used for proper training, and further, a 

feature subset may perform well for some classes but poorly for others. ‘DTC’ has been 

employed for overcoming these difficulties, to use multi-level classification under the 

‘divide and conquer’ principle. Support vector machine (SVM) approach also provides 

good control of model complexity to avoid over-fitting, but due to the requirement for 

determining hyper-parameters, the training time in offline modeling might be longer. 

Furthermore, the determining hyper-parameters may need a larger sample set. Taking into 

all these considerations, ‘DTC’ would be preferable for online 2D cursor control, since it 

has good performance and is simple and fast. 

 

6.6 Implications of proposed BCI 

BCI has been proposed for patients who may lose voluntary muscle contraction. In the 

extreme state such as in patients with amyotrophic lateral sclerosis (ALS), individuals may 

be entirely ‘locked-in’ though their cognition is still intact.  Under these conditions, BCI is 

then only possible with motor imagery. The two-dimensional BCI control in this study 

shows that reliability or accuracy was less with motor imagery than with physical 

movement. However, only two subjects have been studied with motor imagery so that 

further study with more subjects should be addressed.  For patients who are not in a 

‘locked-in’ state but cannot produce reliable muscle contraction due to muscle weakness or 
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spasticity, we would expect more reliable two-dimensional control with their limited motor 

output as this study demonstrates a highly reliable control with simple physical movement. 

BCI has been proposed as an interface to control external devices directly from the brain 

for the purpose of restoring motor function. Recently, another potential application of BCI 

has been recognized, as a tool to augment brain plasticity and outcomes for neurological 

rehabilitation. i.e. BCI could be employed for the rehabilitation of motor and cognitive 

impairments in hemiplegic or paraplegic patients by offering on-line feedback about 

cortical activity associated with mental practice, motor intention, and other neural 

recruitment strategies during progressive task-oriented practice [57].  

In this study, the set up time for electrodes over whole scalp was around 15-20 minutes. 

As this is an exploration study, we applied electrodes over the whole scalp. From the 

feature analysis in Figure 11, we found that the electrodes over motor cortex provided 

better features for classification. Therefore, the number of electrodes for future practical 

application can be further reduced and electrode setup time might be reduced to within 10 

minutes. 

In summary, ERD/ERS using our 2D natural paradigm present four distinguishable 

patterns as we expected, both in physical movement and imagery. Although variability 

might lead to considerable challenges in the classification process, the intensive methods 

we applied exhibit satisfying properties and robust results, making 2D control more 

reliable. It is worthwhile to pursue this potential system since EEG is less expensive, 

flexible, and has established analysis techniques. If the design and signal processing 

methods can be further improved, BCI products will eventually offer those who have 
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totally lost muscle control with convenient, fast and reliable control of mechanical devices. 

This will largely reduce the reliance on continuous support from others, and thus enhance 

their quality of life. 
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APPENDIX A 
 

Filtering 

A.1. Spatial filtering 

The spatial filter applies a transformation matrix that is determined under certain 

constraints to the EEG signal so that the filtered signal may have a better signal-to-noise 

ratio for identifying the changes of the underlying neuronal sources. This procedure is 

similar to beamforming, which can increase the gain in the direction of the task-related 

signals and decrease the gain in the direction of interference and noise[58]. As a result, the 

spatial filter may improve classification accuracy. The signal from electrodes was directly 

fed into the temporal filter. 

    ‘SLD’ performs surface Laplacian transformation on multi-dimensional EEG signals. 

Realistic Laplacian transformation usually requires a head shape model, which can be 

constructed from brain imaging [59]. We employed a simple method, which is also called a 

‘reference-free’ method so that the signal is independent of which electrode is used as 

reference. The EEG signal from each electrode was referenced to the averaged potentials 

from four orthogonal nearby electrodes. SLD operation enhanced the spatial resolution of 

local EEG potentials by reducing the volume conduction effect. SLD applies a high-pass 

filter to suppress low-spatial frequency components along with volume conduction 

components so that the local synchronizations, in particular, their radial components, have 
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increased spatial specificity [45] and as a result, the spatial difference following hand 

movements might be more discriminable. 

A.2. Temporal filtering 

    Two temporal filtering methods were explored. The temporal filters were performed on 

spatially filtered EEG trials. The signal power obtained from temporal filters was 

represented in logarithmic form. ‘VAR’ calculated the variance of the spatial filtered signal, 

i.e., whole frequency band power of the signal. 

    ‘PSD’ estimated power spectral densities of the spatial filtered signal using the Welch 

method. A Hamming window was employed to reduce side lobe effect. The FFT length 

was set to 0.256 s resulting in a frequency resolution of approximately 4 Hz. Power 

spectral densities were smoothed from segments with 50% overlapping. A number of PSD 

estimation methods have been used in the signal processing literature, each of which varies 

in resolution and variance of the estimation. Periodogram or modified periodogram has 

higher spectral resolution, but the resulting variance is also larger than that of the Welch 

method [46]. The multitaper method provides a solution to balance the variance and 

resolution [60]. However, an optimal multitaper method permits the trade-off between 

resolution and variance to usually be data-dependent [61]. We did not employ parametric 

methods, for example, using autoregressive model coefficients [62]. The parametric model 

requires determining model order. Further, the model coefficients for classification are also 

indirect to frequencies, which are difficult for general neurophysiological analysis. 
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APPENDIX B 
 

Feature preprocessing 

 

    Features having large variances may dominate the learning process in the classifier 

training. The filtered data (features) were scaled to zero mean and unit standard deviation 

of one for numeric stabilization. 
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APPENDIX C 
 

Feature selection 

 

    The spatially and temporally filtered EEG signals provided high-dimensional features; 

for example, 27 EEG channels with 16 frequency bins produced 432 features. Because of 

the noisy nature of EEG, such high-dimensional features may bias the classification model 

producing a low testing accuracy. A compact subset of features needs to be determined for 

achieving a robust classification. The subset feature selection can be determined either 

empirically or ‘data-driven’. Because of the high dependence among features, the 

empirical approach usually does not provide a good solution. The exhaustive search 

method is one of the optimal feature selection methods, which evaluates all possible 

subsets to determine the best subsets. For example, the exhaustive search of a subset of 3 

features from 432 features results in more than ten million combinations. It is impractical 

to perform this due to the computational burden. We adopted a sub-optimal method of 

genetic algorithm-based search, which is a stochastic search in the feature space guided by 

the idea of inheriting, at each search step, good properties of the parent subsets found in 

previous steps [63]. One important procedure in the genetic algorithm-based feature 

selection is the evaluation of feature subsets. In this study, the feature subsets were 

evaluated on 10-fold cross-validation accuracy using a Linear Mahalanobis Distance 
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(LMD) classifier in order to reduce the risk of over-training [64]. According to the 

evaluation of the feature subset, a new generation was created from the best of them. By 

repeating this procedure, a sub-optimal feature subset for the classification was determined. 

In this approach, the dimension of feature subset should be provided previously. We 

performed a pilot study to investigate an optimal dimension. Because of the difference in 

spatial and temporal filters, it was difficult to determine an optimal dimension. We 

proposed the strategy of grid search from 4 to 20 with step of 4 according to the finding in 

the pilot study. In GA approach, the population size was 20, the number of generations was 

100, the crossover probability was 0.8, the mutation probability was 0.01, and the stall 

generation was 20. 

    Because of the large number of features, the convergence speed under GA was still very 

slow. For the purpose of faster convergence and less risk of local minima, we proposed an 

approach of pre-feature selection to pre-select features having larger Bhattacharyya 

distance between two task conditions. The Bhattacharyya distance is the square of mean 

difference between two task conditions divided by the variance of the samples in two task 

conditions [49]. The Bhattacharyya distance was calculated on each feature (univariate) in 

feature pool indexing the feature separability between two task conditions, which was 

somewhat similar to ANOVA statistic test by evaluating the volume of the pooled 

covariance matrix of the class relative to the separation of their means. As Bhattacharyya 

distance indexes the separability directly, it is preferable for feature selection with 

comparison of other indexing methods, for example, the Fisher Score which indexes the 
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similarity. The features were sorted in descending order according to their Bhattacharyya 

distance; the first 100 features were retained for subsequent multivariate feature selection. 
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APPENDIX D 
 

Classification 

 

We explored three statistical classification and three neural network classification 

approaches. For pattern recognition, the simplest classification can be achieved by finding 

the minimum distance to the prototypes, usually the sample means under different tasks. 

For example, in the case of a two-feature two-class classification problem, the discriminant 

boundary is a straight line perpendicular to the linking of means and passing at half 

distance. Because the features are not necessarily mutually uncorrelated, we adopted linear 

and quadratic Mahalanobis distance, which takes covariance into account [49]. ‘LMD’ 

computed a pooled covariance matrix averaged from individual covariance matrices in two 

task conditions so that the discriminant boundary is hyper-planes leaning along the 

regression.  

We explored a nonlinear classification approach using neural networks. The neural 

network approaches provide more complicated discriminant boundaries, for example, by 

using polynomial functions. Theoretically, it may provide higher accuracy in classification 

tasks, at least in the training procedure. Successful applications in BCI development have 

also been reported ([65] and [66]). 
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Support vector machines (SVM) tackle the principle of structure risk minimization with 

the consideration of maximization of the margin of separation [50]. As a consequence, 

SVM can provide a good generalization performance independent of the sample 

distribution. As a promising method, SVM has been suggested in a number of BCI 

applications ([67], [51] and [52]). We employed a SVM approach provided in LIBSVM 

[68]. We selected the RBF as the kernel function since the RBF kernel can provide a 

similar classification outcome compared with other kernels [53]. Two data-dependent 

parameters needed to be determined in the training procedure; the penalty parameter for 

controlling model complexity and the spread parameter for RBF functions. A 2-D grid 

searching with 5-fold cross-validation was performed; 2K, K from −5 to 15 with step of 2 

for the penalty parameter and 2K, K from −15 to 5 with step of 2 for the spread parameter. 

65 
 



www.manaraa.com

 

 

APPENDIX E 
 

Experimental Procedure 

 

The following steps were taken during every experiment.  

Before the subject comes, the following steps should be done: 

1. Turn on power 1 & 2 of the amplifiers. 

2. Restart PC. 

3. Check control panel: make sure USB is recognized. 

4. EEG device calibration: 

Start BCI2VR shortcut on the desktop -> 

Select Data Acquisition from the pump-up bar -> 

File->load set-up file -> (C: SharedFolder->BCI2VR_Toolbox->setup_files-

>g32ChwholeHead_btv_daq_settings.m) double click. -> 

Run calibration ( the green button ‘C’) and wait-> 

Check the values in command window, all should be close to ‘1’. Accept it. 

   When subject comes:     

5. Electrodes setup (placement of EEG channels, EMG, and EOG can be referred in 

method part )-> connected to the amplifiers 
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6. Check Impedances: click the blue button ‘I’ in Data Acquisition interface. If 

impedances are low enough which are shown in blue, then close the window. 

7. Start recording:  

      Click the green triangle button to show waveform.-> 

And then open ‘Target Stimuli’ from the bar. Drag the window to the right screen-> 

File-> load stim file (C: SharedFolder->BCI2VR_Toolbox->application-

>2DCursorControl->calibration_stim.m)-> 

(This step is needed for the first time: Run it for a while, let the subject be familiar 

with the paradigm.)-> stop it.-> 

 

      8.   From the Acquisition interface, choose the button next to the green triangle,        

recording data. ->  

Input a daq name for this dataset.  

( First build a new folder for this subject in:  

C: Sharedfolder ->New_EEG_data.  

Name the new folder like DandanH_V2_08192008. 

Open this folder and give a name for the new dataset. Like 

DandanH_V2_2DBCG_phy_1 or img or mix compared to phy. 1 stands for the first 

dataset for physical movement. 

Then click save.) 

See the waveform, wait until steady. 

From the Target Stimuli window, select ‘run’,  
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and click ‘Edit’ to change the mode to either ‘1’- phy or ‘2’-img or ‘3’-mix.  

Remind the subject to focus on the screen, and then click on the black background. 

Move the mouse to the left screen. The recording starts!  

 

9 11 minutes later the stimuli stopped. So the conductor close it by clicking the red 

button. And also stop the recording in Data Acquisition interface.  

 The results are shown.    

10 Start recording the second dataset: repeat step 8 & 9.  

--------------------------------------------------------------------------- 

11 After two datasets for phy, play the game: 

From the Target stimuli, load a new file(C: Sharedfolder->BCI2VR_Toolbox-

>application->2DCursorControl->2DBCG_stim.m )-> Edit->numberofDataFile:2 

or 4, phy or mix. 

Open a new file(2DCursorControl->recalibration.m), change parameters when 

needed. Run it. 

Record the waveform-> give it a name like DandanH_V2_game_1. 

Wait until steady. -> play the game. 

12 Record two datasets for img. Not necessary to play the game. 

13 Record 4 for mixed movements, and repeat step 11. 

14 After finishing all the recording, take all the electrodes off the subject and provide 

him/her with towel and shampoo to clean. Conductor will need to shut down the 
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amplifiers, clean electrodes and cap, take down all necessary results and make 

another copy of the data. 
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